Random matrix spectral form factor in kicked interacting fermionic chains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization in interacting fermionic chains with quasi-random disorder

We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in [17] to chemical potentials...

متن کامل

Spectral Form Factor in a Random Matrix Theory

In the theory of disordered systems the spectral form factor S(τ), the Fourier transform of the two-level correlation function with respect to the difference of energies, is linear for τ < τc and constant for τ > τc. Near zero and near τc its exhibits oscillations which have been discussed in several recent papers. In the problems of mesoscopic fluctuations and quantum chaos a comparison is oft...

متن کامل

Spectral density of the correlation matrix of factor models: a random matrix theory approach.

We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.

متن کامل

Spectral Sparsification of Random-Walk Matrix Polynomials

We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of a random-walk matrix-polynomial

متن کامل

Spectral Smoothing via Random Matrix Perturbations

We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for the maximum eigenvalue function using the Gaussian Orthogonal Ensemble (GOE). Smoothing the maxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2020

ISSN: 2470-0045,2470-0053

DOI: 10.1103/physreve.102.060202